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Abstract 
This paper introduces some special-case solutions of three-body systems and provides both 

analytical and simulative measures to demonstrate three-body problem. We explore the Euler’s 

solution, Lagrange’s solution, Figure-eight solution, aiming to offer an introductory overview of 

the mechanisms of special circumstances and stability of three-body systems. We pick the 

Lagrange’s solution and Euler’s solution specially by applying the simulative measures in detail.  

It shows that the difference between the masses has no direct correlation with the stability of the 

system in both Euler’s and Lagrange’s solution. The difference of initial positions has notable 

effects on the stability of the Euler’s and Lagrange’s solution.  
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Introduction 
The famous three-body problem is one of the problems in the field of astrophysics that have 

remained mysterious and controversial for a long time. In astrophysics, and there are some general 

analytic solutions for centuries to solve the three-body problem since Newton proposed Newton’s 

law of universal gravitation. 

In the three-body problem, we take the initial positions and velocities of three masses and 

solve for their subsequent motions according to Newton's laws of motion and Newton's law of 

universal gravitation. Compared to two-body problems, no general closed-form certain solution 

exists in the field of three-body problem.  

To describe the three-body problems mathematically, basic Newtonian equations of motion 

will be applied to describe the form of directional vector 𝑟𝑖 = (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)  indicating a 

3-dimensional perspective. The three gravitationally interacting bodies are expressed in terms of 

𝑚1, 𝑚2, 𝑚3.  

�̈�1 = −𝐺𝑚2

𝑟1 − 𝑟2

|𝑟1 − 𝑟2|3
− 𝐺𝑚3

𝑟1 − 𝑟3

|𝑟1 − 𝑟3|3
 (1) 

�̈�2 = −𝐺𝑚3

𝑟2 − 𝑟3

|𝑟2 − 𝑟3|3
− 𝐺𝑚3

𝑟2 − 𝑟1

|𝑟2 − 𝑟1|3
 (2) 

�̈�3 = −𝐺𝑚1

𝑟3 − 𝑟1

|𝑟3 − 𝑟1|3
− 𝐺𝑚3

𝑟3 − 𝑟2

|𝑟3 − 𝑟2|3
 (3) 
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The total energy ℋ of the three-body system is expressed in terms of momentum 𝑝. 

ℋ =  −
𝐺𝑚1𝑚2

|𝑟1 − 𝑟2|
−

𝐺𝑚2𝑚3

|𝑟3 − 𝑟2|
−

𝐺𝑚3𝑚1

|𝑟3 − 𝑟1|
+

𝑝1
2

2𝑚1
+

𝑝2
2

2𝑚2
+

𝑝3
2

2𝑚3
 (4)

The work mainly focuses on historical special-case solutions and aims to derive the 

mathematical equations by importing different parameters to describe the three-body’s motion in 

different cases and use Python to simulate the motion of different cases, varying masses and 

distances, in order to get a direct observation of orbits and interactions. Historical special cases of 

three-body problems such as Euler’s solution, Lagrange’s solution, “Figure-eight” solution are 

included in the paper.  

The three-body system is highly chaotic and unpredictable. Using both analytical and 

simulative methods, we still can not predict exactly movements and orbits of the three-body 

system. The predicted model is easily changed by its surroundings, such as interactions between 

the masses that are out of the original system. Many special cases of three-body problem are 

susceptible to small perturbations, the system can be altered permanently by unexpected forces. In 

this paper, we explore whether the difference between the masses and their initial distances affect 

the stability of the system in Euler’s solution and Lagrange’s solution. After it experiences the 

forces out of the system, the figure-eight system will no longer remain the shape of ideal 

symmetrical figure-eight. The system of figure-eight system is highly unstable, so we do not use 

stimulative measures to calculate the life-span of the system. But there are still some interesting 

properties in the figure-eight system.  

Euler’s Solution 
As we consider the three-body problem, we need to at first look at the model proposed by 

Euler(1765), a collinear model. Location of each mass Mi(i=1,2,3), is written as (Xi,0) ,center of 
mass(CM)(XG,0) Without loss of generality, we assume X3<X2<X1 ,and Ri represents the position 
relative to CM, Ri=Xi-XG Rij=Xi-Xj. We choose x=0 between M1 and M3 Therefore, R3<0 R1>0 and 

R1>R2>R3. Define 
𝑅23

 𝑅12
 =z, R13= (1+z)R12.The equation of the motion represented by the Newton 

equation becomes 

R1ω2 =
GM2

R12
2 +

GM3

R13
2  (5)

R2ω2 = −
GM1

R12
2 +

GM3

R23
2  (6)

R3ω2 = −
GM1

R13
2 −

GM2

R23
2  (7)

Of course, we can solve this system directly by using observational data about the value of masses 
and their distance. Observing the distance between the planets is always the easiest for human and 
using method of transit to calculate their masses is also familiar to researchers. However, there is 
one method researchers can use to save their time to collect the data from three observational 
distance and masses. They can solve the system as shown above.  In order to eliminate ω, we 
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subtract Equation (6)from  Equation (5). Hence, we obtain a fifth-order equation as [1] 
(𝑀1 + 𝑀2)𝑧5 + (3𝑀1 + 2𝑀2)𝑧4 + (3𝑀1 + 𝑀2)𝑧3 − (𝑀2 + 3𝑀3)𝑧2 − (2𝑀2 +

2𝑀3)𝑧 − (𝑀2 + 𝑀3)=0                                               (8) 

It is obvious that z>0. According to Descartes’ rule of signs—the number of positive roots either 

equals to that of sign changes in coefficient of a polynomial or less than it by a multiple of two 
—Equation(4)has only one positive root. With this root, z, we get ω, after plugging in, which 
gives us the angular velocity of the system with little effort.  
 
Interestingly, the particles move along confocal ellipses with the same eccentricity and period 
around the common CM. However, Euler’s model has not been seen in nature because they are 
susceptible to small perturbations. 

 
Figure 1                                       Figure 2 

Euler colinear ideal situation with m1: m2: m3 = 1: 2: 3        simulative Euler’s solution 
Then we use Python to check whether the difference of different masses and difference of the 
initial distances have a correlation with the stability of the system.  
We define the system is stable if they will not collide or go away from each other. Our simulative 
measure is to use the small delta time to update their position and velocity. Nevertheless, using 
this “time-update” method can not calculate the life-span of a system accurately. The masses may 
have collided with each other, which means that their orbits are intersected once, but this moment 
of intersection probably is not updated by chance. In this case, using the two objects to have same 
coordinate in order to judge if they have collided will be inappropriate. In order to judge if they 
collide and go away from each other, it needs small delta time to update their position precisely. 
On the contrary, under the limited of simulative time, it needs large delta time to simulate the large 
life-span of the relatively stable system to get their exact life-span. We set up the upper simulative 
life-span level of 50000 seconds (approximately 13hours) to balance the accuracy and preciseness. 
Otherwise, simulating all situations with small delta time and no upper limit will cost tremendous 
time to simulate.  
First, we look at if standard deviation of the three distances between the masses affects the 
stability of the system. As all the masses are collinear, X2 is defined as 1 and three masses and X1 
are derived through the random number generator in Python. We assume that all three masses 
revolve around the origin of the Cartesian coordinate system. As the center of mass(CM) is the 
origin point, we can calculate for the third position, X3. After having three initial positions and 
three different masses, we can solve three initial velocity of the masses. Define if the distance 
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between two masses is larger than ten times R13, then we say that the masses go away from each 
other and the previous stable system collapse, if the distance is less than one-tenth of the R13, then 
we say that the masses are so closing to each other and have high probability of colliding to each 
other(here we identify these situations as they have collided). Then we simulate the situations with 
varying masses and distance for two thousand times. The standard deviation of the distance, 
calculated from the initial distances of the masses, is plotted in the x-axis. The 
life-span(unit/seconds), based on our stimulative assumption, is plotted in the y-axis as shown 
below.  

Figure3: influence of difference of initial distances between the masses in the large scale(for 
standard deviation of distance in range 0 to 25000) and in the small scale (for standard deviation 

of distance in range 0 to 2500) 
It shows that the points in the right figure have unevenly distributed standard deviation of the 
distance. We control three individual distances to be generated randomly but not the standard 
deviation of the distance. Moreover, the small value of the standard deviation in the right figure is 
caused by our assumption that X2 = 1. Still keeping the value of X2 same, in the left figure, we use 
larger range of number generator to increase the standard deviation of the distance. According to 
our data, the points denoted the high stability concentrate around x=0. As the difference of three 
distances increases, the life-span drops dramatically. The Euler’s solution shows the high 
dependence on the difference of the initial positions of the three masses.  
For the second part of our simulation, we fix three masses in the constant distance and vary the 
value of masses. Two values of masses are generated through the number generator and the third is 
calculated by CM. Collecting the initial position and masses, we calculate their initial velocity that 
they revolve around the origin. We still set up upper life-span level, 50000seconds, to save the 
time to simulate. The results are shown in Figure 4.  
The simulative situations lie mainly in the upper level of life-span and near to zero life-span. The 
points in the middle are evenly distributed from the upper level to the zero. There’s no need to 
enlarge the simulative upper level of life-span because we can conclude that there is no correlation 
between the standard deviation of masses in Euler’s solution by visually judging the graph.  
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Figure 4 

Life span of differenece of the masses 

Lagrange’s Solution 
Lagrange(1772) proposed his model of three bodies by arranging three particles at the 

vertices of the equilateral triangle. Each particle still follows the same eccentricity and period in 
the shape of the eclipse with different angles. We should note that the Lagrange solution is stable 
only if one of the three masses is much greater than the other two, also known as the restrict 
three-body problem. Ideally, three equal masses move in circular orbit which requires that the 
velocity is perpendicular to the gravitational force from CM at any time. Without loss of generality, 
we examine one mass in particular. Its potential energy and kinetic energy are equal to  
 

𝐾(�̇�) =
1

2
∑ 𝑚𝑖

𝑛

𝑖=1

|�̇�𝑖|2                                                                 (9)  

𝑈(𝑟) = ∑
𝑚𝑖𝑚𝑗

𝑟𝑖𝑗

𝑛

1<𝑖<𝑗<𝑛

                                                                 (10)  

 
Here we import the Lagrangian, combing the equation(9) and (10) together  

ℒ(𝑥(𝑡), �̇�(𝑡)) = 𝐾(�̇�) − 𝑈(𝑟)                                                       (11)                                                        
Because all gravitational forces are conservative forces which change the energy no matter which 
routes they take. Literally, the energy is conserved in the orbits. From the definition of Lagrangian, 
we import the Lagrangian equation and equations about action of the path, 𝐴(𝑥). 

𝑑

𝑑𝑡
(

𝜕ℒ

𝜕�̇�
) =

𝜕ℒ

𝜕𝑥
                                                                       (12) 

𝐴(𝑥) = ∫ ℒ(𝑥(𝑡), �̇�(𝑡))
𝑡2

𝑡1

𝑑𝑡                                                             (13) 

 
Given particular starting and ending positions, the system follows a path between the start 
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and end points which minimizes the action of the path while keeps the energy of the system 
constant.  

In the following discussion, in order to simplify the problem, we assume that all three 
particles have the same mass. Each of them lies on the vertices of an equilateral triangle with the 
mass, m, where the sides of the triangle are equal to 2a. First, we express the potential energy in 
Cartesian coordination 

𝑈(𝑥, 𝑦) = −
𝐺𝑚𝑖𝑚

√(𝑥 − 𝑎)2 + 𝑦2
−

𝐺𝑚𝑖𝑚

√(𝑥 + 𝑎)2 + 𝑦2
−

𝐺𝑚𝑖𝑚

√𝑥2+(𝑦 − √3𝑎)
2

 (14) 

It makes sense that the particles are moving in the circular orbit. Therefore, we put the potential 
energy into the form of polar coordination and parameter coordination, both of which need 𝜽. 

𝜌 =
2√3

3
𝑎, (𝜃, 𝜌) = (𝜔𝑡, 𝜌) In polar coordination, we obtain 

(𝜃, 𝜌) = (√
3𝐺𝑀

8𝑎3
𝑡,

2√3

3
𝑎)  (15)

plug x and y by using the parameters in trigonometric functions 

𝑈(𝜃) = −
𝐺𝑚𝑖𝑚

√(𝜌 𝑐𝑜𝑠 𝜃 −
√3
2 𝜌)

2

+ (𝜌 𝑠𝑖𝑛 𝜃 +
𝜌
2)

2

−
𝐺𝑚𝑖𝑚

√(𝜌 𝑐𝑜𝑠 𝜃 +
√3
2 𝜌)

2

+ (𝜌 𝑠𝑖𝑛 𝜃 +
𝜌
2)

2

−
𝐺𝑚𝑖𝑚

√(𝜌 𝑐𝑜𝑠 𝜃)2 + (𝜌 𝑠𝑖𝑛 𝜃 − 𝜌)2

 = −
𝐺𝑚𝑖𝑚

𝜌√𝑠𝑖𝑛 𝜃 − √3𝑐𝑜𝑠 𝜃 + 2
−

𝐺𝑚𝑖𝑚

𝜌√𝑠𝑖𝑛 𝜃 + √3𝑐𝑜𝑠 𝜃 + 2
−

𝐺𝑚𝑖𝑚

𝜌√2 − 2𝑠𝑖𝑛 𝜃
 (16) 

We import the elliptical coordination to eliminate the ugly square root sign. We congregate 
random two masses to their center of mass(CM) in order to enable the system to have only two 
particles rather than three because elliptical coordination only allows the existence of two 
particles. 

𝑈(𝑥, 𝑦) = −
2𝐺𝑚𝑖𝑚

√(𝑥 −
3
4 𝜌)

2

+ 𝑦2

−
𝐺𝑚𝑖𝑚

√(𝑥 +
3
4 𝜌)

2

+ 𝑦2

 (17)

{
𝑥 =

3

4
𝜌 𝑐𝑜𝑠 ℎ𝛼 𝑐𝑜𝑠 𝛽

𝑦 =
3

4
𝜌 𝑠𝑖𝑛 ℎ𝛼 𝑠𝑖𝑛 𝛽

 (18) 

plug x and y from equation(18) to equation(17) in elliptical coordination [2] 

𝑈(𝛼, 𝛽) = −
2𝐺𝑚𝑖𝑚

3
4 𝜌(𝑐𝑜𝑠 ℎ𝛼 − 𝑐𝑜𝑠 𝛽)

−
𝐺𝑚𝑖𝑚

3
4 𝜌(𝑐𝑜𝑠 ℎ𝛼 + 𝑐𝑜𝑠 𝛽)

=
−𝐺𝑚𝑖𝑚(3 𝑐𝑜𝑠 𝛽 + 𝑐𝑜𝑠 ℎ𝛼)

(𝑐𝑜𝑠 ℎ𝛼 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 ℎ𝑎 + 𝑐𝑜𝑠 𝛽)
 (19) 
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Equations (19)(16)(15)(14) have different variables.We can selectively use available observational 
data to have enough parameters to solve the problems in the best way by combining these 
equations.   
We explore the stability of Lagrange’s solution by using the simulations in Python. If the three  
masses in the system are equal, the Lagrange’s solution is stable for short period of time, but it 
will not last so long. Figure 5 shows the early stable stage of Lagrange’s solution.  
 

Figure 5: early stage of Lagrange’s solution       Figure 6: detailed view of early stage 
Figure 5 is the overlooking picture of Lagrange’s solution. Three orbits in different colors overlap 
with each other so that there is only the red color orbit in the view. After zooming in the picture, 
we see the details of their orbit. In figure 6, we see that there is already slightly different in their 
orbits. Ideally, the three masses initially located at vertices of an equilateral triangle with proper 
direction of velocity will move in the same circular orbit. With the same radius of the orbit, their 
trace will be exactly overlapped in this case. However, in reality, the small difference of the radius 
of the circular orbit would gradually increase and finally turns out to be an unstable system. In our 
simulations, only few situations will last for stable for years—we define the stable system that the 
masses do not collide with each other or go away from each other.  
First we simulate three equal masses located at vertices of an equilateral triangle with proper 
direction of velocity by varying values of masses. The varying masses in our simulation are in the 
same order of magnitude—109 kg. The varying masses enable us to see the difference of the 
consequences of three smaller masses and three larger masses. Based on previous simulative 
methods, we use a rough approach to judge if a system collides or goes away from each other in 
equilateral configuration. We define that if the distance between two masses is larger than ten 
times their original distance, 𝟐𝒂, we say one particle would probably go away from each other and 
the interactions between the masses are much smaller compared to original forces and if the 
distance between two masses is less than one-tenth of their original distance, we say that it would 
probably collide to each other. Keeping their original distance remaining the same, we simulate 
the situations that vary values of the masses over ten thousand times to form Figure 7 below.  
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                                   Figure 7 

The life span of different masses 
It clearly indicates that the systems including small masses are more stable than the systems 
including large masses. It makes sense that the larger masses require also larger distance to keep 
the system to be stable. Our simulative distance, 𝜌 = 1m, only is suitable for the masses in 
109kg rather than 1010kg. 
The previous simulations focus on finding an optimal value of three equal masses in the system. 
Then we vary the three masses respectively so that there is the random difference between the 
three masses in a system. We plot the value of standard deviation of three varying masses in the 
system as x value and the life-span of the system as y value in the following diagram.   

   
 

Figure 8 
The life span of difference of standard deviation of the masses 

According to the diagram, there is no notable direct correlation with the standard deviation of the 
masses and the stability of the system. The points are evenly distributed for any value of standard 
deviation of the masses in Lagrange’s solution. It should note that our simulative standard 
deviation of the masses is really small because all the masses are in the same order of magnitude. 
Lagrange(1772) also proposed the Lagrange points, which implies that the larger difference of 
the three masses, also known as the restrict three-body problem, can still form the stable system. 
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Therefore, the difference of three masses in the system will not affect the stability of the system. 
Comparing Figure 7, we also find that three equal masses are stabler than three different masses 
within small standard deviation. We have to note that the three different masses with large 
standard deviation, such as the masses located in Lagrange points in the restrict three-body 
problem, are quite stable.  

 

 Figure 9: stimulation with small distances          Figure 10: stimulation with large distances  
         between the masses                                 between the masses 
For the third part of our simulation, we vary their initial distances while keeping three masses 
equal and constant. There is a peak around x=1, but subsequently the stability drops dramatically  
immediately. Where the system rises to its peak is varying from the different masses. In our 
simulation, we pick m=2.26e9. It proves that there will always be only one optimal distance(x 
value of the local extreme point in the graph)for three equal masses in the system to be the stablest 
locally. Larger than the optimal distance, the stability of the system increases as the distances 
increase because their interacting gravitational forces decrease as the distance is larger. With low 
interacting forces, the system moves slower and neither collides soon nor goes away quickly. We 
have tried to use the curve_fit in Python to draw the regression analysis of Figure 10 in a 
mathematical expression. However, perhaps due to the effect of the peak around x=1, we failed to 
draw the regression curve.  
 

Figure-eight Solution 
The model and stability of the figure-eight configuration were proposed by Chenciner and 

Montgomery [2001][3] The complex motion of figure-eight movements can also be broken into 
two simple situations which are Euler collinear situations and isosceles triangle situations as  
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showing below  

 
Figure 11: Figure-eight solution [4] 

In order to explore the stability of the figure-eight solution, we need to consider the initial phase of 
three masses. First of all, we assume that all three particles have the same mass. If we place three 
particles randomly on the eight-shaped orbit, the three-body system will be a chaos. Therefore, we 
consider the system as a two-body system and put the one particle on each side to balance them. 
What we need to do next is to place the third particles to satisfy the following equations. 
The whole system can be represented as  

𝑥1(𝑡) + 𝑥2 (𝑡 +
1

3
𝑇0) + 𝑥3 (𝑡 +

2

3
𝑇0) = 0                                                    (20) 

𝑦1(𝑡) + 𝑦2 (𝑡 +
1

3
𝑇0) + 𝑦3 (𝑡 +

2

3
𝑇0) = 0                                                   (21) 

 
These equations not only prove the great symmetry in the figure-eight movements in special 

cases but also show the prerequisite of the eight-figure solution. 
One of the most notable features in the figure-eight solution different from the previous 

solution is the feature of the period. We define the eight-shaped planar position function x(0)=(0,0) 
for ∀ x ∈ ℂ, and define the intersecting point in the middle as the origin point. The whole period 
is defined as T, and the small interval is defined as 𝑻𝟎 .Therefore, 12𝑻𝟎=T. The intervals which 
travel between the collinear situation and isosceles situation are equal as proved by Chenciner and 
Montgomery [2001][3]. It always takes 𝑻𝟎 to travel from the collinear situation and isosceles 
situation. After reaching the position of isosceles situation, three masses also take  𝑻𝟎 to go back 
to the collinear situation. Assuming that all masses are equal, we have some interesting 

conclusions toward the period. Their initial time can set as 𝟎,
𝟏

𝟑
𝑻𝟎,

𝟐

𝟑
𝑻𝟎 , in order to sustain their 

periodic motion. No matter when they travel the sum of the x-coordinate and y-coordinate is the 
same which equals the position of the origin point. That is  

𝑥(𝑡) = (𝑥1(𝑡), 𝑥2 (𝑡 +
1

3
𝑇0) , 𝑥3 (𝑡 +

2

3
𝑇0))                                                 (22) 

𝑦(𝑡) = (𝑦1(𝑡), 𝑦2 (𝑡 +
1

3
𝑇0) , 𝑦3 (𝑡 +

2

3
𝑇0))                                                (23) 
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Conclusion 
In this passage, we have explored famous historical special cases in the three-body problem. In 
Euler’s solution, we propose an analytical proportional number, z, to solve for ω, the angular 
velocity, which saves the time from solving the original three equations simultaneously by 
measuring three values of masses and three values of distances. Our simulations of Euler’s 
solution have proved that the difference of the masses has no direct correlation with the stability of 
the system and Euler’s solution is stabler when the difference of initial position is small. By using 
parameters in polar coordination, parameter coordination, Cartesian coordination, and elliptical 
coordination, we have a better understanding of the system of Lagrangian configuration. In the 
simulative Lagrange’s solution, the standard deviation of the difference of masses also has no 
direct correlation with life-span of the system. For the difference of initial positions, the life-span 
of the system first reaches one peak of stability, followed by a straight fall to zero, and again 
increases gradually as the standard deviation of the initial distance increases. Moreover, we also 
include the symmetrical and periodical properties in figure-eight solution.  
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